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ABSTRACT   

Precise control of system parameters and extensive optimization play a crucial role in enabling quantum information 

technologies. As a further challenge, when targeting practical manufacturable systems, the presence of manufacturing 

variations in components necessitates individual optimization for each system.  To address this challenge, we develop a 

generalisable optimisation framework based on deep reinforcement learning (RL). By applying our method to real-world 

quantum transmitters based on optical injection locking (OIL), we demonstrate that our RL agent can autonomously 

identify the optimal operating regions, and generalise its knowledge for new quantum transmitters of the same type. This 

work presents a new avenue for efficient optimisation of complex systems using modern RL algorithm. 
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1. INTRODUCTION  

Quantum key distribution (QKD) allows two users to exchange secret keys with security guaranteed by the fundamental 

laws of physics, where no computational assumptions are imposed on potential eavesdroppers [1, 2]. Such technology 

gains significant interest as traditional cryptographic scheme become increasingly susceptible in the face of quantum 

computing advancements. As the adoption of QKD technology accelerates, there is an increasing need for more robust 

and reliable systems. Recently, optical injection locking (OIL) has emerged as a promising technique to realise high-rate 

and robust quantum transmitters [3], where quantum states are prepared and encoded at gigahertz rate before distributing 

them to a receiver. Although OIL presents several appealing characteristics, its underlying laser dynamics exhibit 

significant complexity [4] due to the intricate interplay between various control parameters. Achieving stable locking 

conditions for low-noise and high-coherence output in OIL systems presents a challenge due to the need to 

simultaneously optimise multiple, interdependent parameters. This complexity is compounded by the intrinsic variations 

of individual lasers and manufacturing tolerances, which lead to deviations in optimal operating points, even within the 

same component model. Consequently, optimal parameters identified for one system are typically not directly 

transferable to another, necessitating the needs for individual system optimisation. It is therefore highly desirable to 

develop an efficient method that enables automatic and reliable system tuning.  

Recently, an autonomous optimisation approach has been developed using genetics algorithms (GAs) to optimise the 

quantum transmitter based on optical injection locking [5]. It was shown that the method can successfully tune the 

system to its optimal state without any human intervention. However, a limitation arises: as the properties of every 

system are slightly different—for example, the variations in the lasing thresholds and emission frequencies of the 

lasers—the whole optimisation procedure needs to be repeated for every new system, even if it is similar to the previous 

ones. This is because GAs, at their core, are search-based and lack the ability to learn from past optimisations and apply 

this knowledge to new but related scenarios. A more efficient solution would involve algorithms that not only adapt 

during the optimisation process but also generalise this learning to apply it to new systems with similar dynamics. To 

address this, we have developed a novel framework employing deep reinforcement learning (RL). This framework 

enables the system to learn from its experiences and apply this knowledge to optimise similar systems, making the 

process more efficient and generalisable. This is particularly relevant for chip-based systems [6] where a large number of 

chips with the same design are fabricated.  
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2. QUANTUM TRANSMITTER DESIGN 

 
Fig. 1: (a) Experimental setup. VOA variable optical attenuator, Circ circulator, AMZI asymmetric Mach-Zehnder interferometer, PS 

phase shifter, Det detection. (b) Direct phase encoding scheme of the quantum transmitter. 

The experimental setup is shown in Fig. 1a. The transmitter consists of two distributed feedback (DFB) lasers, arranged 

in an OIL configuration. Light is injected from the ‘master’ laser into the cavity of the ‘slave’ laser via an optical 

circulator. The injection power is controlled by using a variable optical attenuator (VOA). The temperature of each laser 

is stabilised by an integrated thermoelectric cooler. The RF signals supplied by an arbitrary waveform generator and the 

DC bias supplied by the current source are combined using a bias-tee to drive each laser. The master laser is gain-

switched at 1 GHz, generating a train of long pulses with a duration of ~850 ps. The master pulses are injected into the 

slave laser which is gain-switched at 2 GHz, generating a train of short pulses with ~70 ps duration. The driving signals 

of the two lasers are temporarily aligned such that each master laser pulse coherently seeds the generation of two slave 

laser pulses. This pulse-pair, generated under the same master pulse, represents the early and late time bins for one clock 

cycle, forming the basis for time-bin encoding.  

 

The relative phase between the two slave laser pulses is used to encode the bit values. Here we perform direct phase 

modulation where the relative phase can be modulated without the need for external modulators [7,8]: by adding a small 

perturbation on the driving signal of the master laser, the carrier density will be changed. As a result, the emission 

frequency will change which in turns changes the phase evolution. Due to optical injection locking, the slave laser 

inherits the phase of the master laser. As the modulation is located between the two slave pulses, this induced phase 

change is subsequently transferred onto the relative phase between the two slave pulses, as schematically shown in Fig. 

1b. An asymmetric Mach-Zehnder interferometer (AMZI) with a delay line of 500 ps is used to decode the relative phase 

between the slave laser pulses. The outputs of the AMZI are measured with detectors and analysed to compute the 

quantum bit error rate (QBER) in a proof-of-concept experiment. A PC is used to control all of the electronics and access 

the measurement data. 

 



 

 
 

 

 

 

3. GENERALISABLE AUTONOMOUS OPTIMIZATION WITH DEEP RL 

3.1 Formalising the optimisation problem in a RL framework  

RL is a general formalism that studies optimal decision making in sequential processes. The RL problem is formulated in 

terms of an agent interacting with an environment in discrete time steps. At each time step t, the agent observes the 

current state st of the environment and selects an action at. Following this action, the environment provides an immediate 

reward rt and transitions to a new state st+1. The agent's goal is to maximize the cumulative rewards it receives over the 

course of its interactions with the environment. To achieve this, the agent learns through trial and error, collecting 

information from the environment and determining the best action to take in response to each observation. 

To apply RL in solving our optimisation problem, first we frame the task as a pathfinding problem, where the agent 

needs to learn to find the best path moving from a starting point to an end point in a grid world. The objective is for the 

agent to learn a policy that maximizes the total reward. With this framework, we can consider the laser optimisation 

landscape as the discrete grid world where the agent needs to locate the optimum operating position, navigated by the 

system performance as a form of rewards. The metric that quantifies the system performance of the quantum transmitter 

is the QBER, which depends on the driving parameters of the transmitter. To generalise the optimisation, we train the RL 

agent with various similar environments that share the same underlying mechanism. As such, our agent will be exposed 

to different environment during its training, and will thus be able to derive a generalised policy to navigate in this type of 

environment, to autonomously minimize the QBER. 

In the conventional pathfinding settings [9], the dimensions of the grid world naturally translate to the optimisation 

parameters of interest, and the current parameter values are represented by the coordinate of the agent in the grid world 

(which can be multidimensional). With these settings, however, the RL agent inevitably fails. This is because the 

observation of the agent is tied to the coordinates in the environment. During training, the agent tries to find the best 

route leading to the destination in terms of a set of coordinates in the environment. When the environment has changed, 

the agent simply has no way to distinguish which environment it is currently in. To overcome this problem, we 

reconstruct the representation of the agent’s observation. Instead of using its own coordinate in the grid, we use its 

surrounding terrain in the parameter space as its observation [10], as shown in Fig 2. The settings are summarised as 

below: 

1. Environment = Parameter space of optical injection locking dynamics 

2. Observation = ∑ ∑ 𝑓 ( 𝑥 + 𝑖, 𝑦 + 𝑗 )𝑗𝑖  where (x, y) is the coordinate of the agent and i, j iterates over the 

coordinates of the local terrain surrounding the agent in the environment.  

3. Action = {+1, +0, -1} 

4. Rewards, r = −𝑄𝐵𝐸𝑅 + 100𝑠, s = 1 if QBER ≤ QBERoptimum else s = 0 

 

3.2 Experimental results 

To verify our approach, we use three sets of OIL systems to train the agent to locate optimum region and use one other 

set for validation. During training, in each episode, one of the laser sets is selected randomly for the agent to control. We 

optimise for four parameters: master laser DC bias current, slave laser DC bias current, injection power and slave laser 

wavelength (as set by the temperature tuning). In this work, we use the soft actor-critic (SAC) algorithm [11], which is 

an off-policy actor-critic deep RL algorithm, to learn the policy. SAC-based policy is trained to maximize a trade-off 

between expected reward and entropy, a measure of randomness in the learned policy. This is implemented by using the 

Stable Baselines3 library, a widely-used toolkit for reinforcement learning algorithms in Python [12]. Fig. 3 shows the 

success rates in tuning the three sets of lasers during training. A “success” episode is achieved when the system is tuned 

to a QBER below 3.5%. The variation in these curves shows that the agent is trying to derive an optimal policy that can 

simultaneously optimise these three sets of lasers. For example, after 2000 episodes, the agent becomes very good at 

tuning set 1, but struggle at tuning set 3. After 4000 episodes, the agent is able to find a way to optimise all of them, 

suggesting generalisation in its optimisation strategy. 

 



 

 
 

 

 

 

 

Figure 3: Learning curves during training. Each curve shows the success rate of the corresponding laser set. 

After training, the agent is applied to the validation set. Fig. 4 shows 8 trials of optimizations performed by the agent, 

showing that starting from a random state, the agent is capable of tuning the laser to a QBER below 3.5% (our chosen 

threshold for success, determined as a reasonably low QBER for good QKD system operation) with a high success rate, 

despite the fact that the agent has not encountered this laser set before. Moreover, it can locate the optimal state within 

~10 steps (less than 5 min). Note that here the QBER is measured with an oscilloscope to facilitate fast data acquisition, 

although similar results would be expected using single-photon detectors with time-tagging electronics. An interesting 

observation here is that sometimes the QBER temporarily increases, then reduces again to the optimum value. This 

underscores a key aspect of reinforcement learning: an agent does not merely follow the local landscape in the parameter 

space, akin to what we see in gradient descent. Instead, the agent predicts the long-term outcomes, which in this case 

means identifying and navigating towards the location of optimal region with much bigger rewards, sometimes this 

means choosing paths that are initially less rewarding but potentially lead to greater overall rewards. 

 

 
Fig. 4: QBER optimizations performed by the RL agent on the validation laser set. Each line represents a different experimental run of 

the optimization. 

 



 

 
 

 

 

 

4. CONCLUSION 

In conclusion, we have introduced a novel method for multiparameter optimization in complex systems, specifically 

focusing on the QKD transmitter based on OIL. By leveraging advancements in deep RL, the results show that our 

model can generalize the optimization across different systems of the same type, efficiently locating their optimal 

operating regions. Our work presents a new avenue for efficient optimization of complex systems, offering a pathway 

towards low-cost and scalable production processes and more widely available quantum technologies. 
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